Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37686063

RESUMEN

Amino acid availability is crucial for cancer cells' survivability. Leukemia and colorectal cancer cells have been shown to resist asparagine depletion by utilizing GSK3-dependent proteasomal degradation, termed the Wnt-dependent stabilization of proteins (Wnt/STOP), to replenish their amino acid pool. The inhibition of GSK3α halts the sourcing of amino acids, which subsequently leads to cancer cell vulnerability toward asparaginase therapy. However, resistance toward GSK3α-mediated protein breakdown can occur, whose underlying mechanism is poorly understood. Here, we set out to define the mechanisms driving dependence toward this degradation machinery upon asparagine starvation in cancer cells. We show the independence of known stress response pathways including the integrated stress response mediated with GCN2. Additionally, we demonstrate the independence of changes in cell cycle progression and expression levels of the asparagine-synthesizing enzyme ASNS. Instead, RNA sequencing revealed that GSK3α inhibition and asparagine starvation leads to the temporally dynamic downregulation of distinct ribosomal proteins, which have been shown to display anti-proliferative functions. Using a CRISPR/Cas9 viability screen, we demonstrate that the downregulation of these specific ribosomal proteins can rescue cell death upon GSK3α inhibition and asparagine starvation. Thus, our findings suggest the vital role of the previously unrecognized regulation of ribosomal proteins in bridging GSK3α activity and tolerance of asparagine starvation.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Neoplasias , Aminoácidos , Asparagina , Glucógeno Sintasa Quinasa 3/genética , Neoplasias/genética , Proteínas Serina-Treonina Quinasas , Proteínas Ribosómicas/genética , Humanos
2.
Front Immunol ; 14: 1072142, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761727

RESUMEN

Infections with influenza A viruses (IAV) cause seasonal epidemics and global pandemics. The majority of these infections remain asymptomatic, especially among children below five years of age. Importantly, this is a time, when immunological imprinting takes place. Whether early-life infections with IAV affect the development of antimicrobial immunity is unknown. Using a preclinical mouse model, we demonstrate here that silent neonatal influenza infections have a remote beneficial impact on the later control of systemic juvenile-onset and adult-onset infections with an unrelated pathogen, Staphylococcus aureus, due to improved pathogen clearance and clinical resolution. Strategic vaccination with a live attenuated IAV vaccine elicited a similar protection phenotype. Mechanistically, the IAV priming effect primarily targets antimicrobial functions of the developing innate immune system including increased antimicrobial plasma activity and enhanced phagocyte functions and antigen-presenting properties at mucosal sites. Our results suggest a long-term benefit from an exposure to IAV during the neonatal phase, which might be exploited by strategic vaccination against influenza early in life to enforce the host's resistance to later bacterial infections.


Asunto(s)
Antiinfecciosos , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Animales , Ratones , Humanos
3.
Mol Cell ; 82(15): 2858-2870.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35732190

RESUMEN

The tolerance of amino acid starvation is fundamental to robust cellular fitness. Asparagine depletion is lethal to some cancer cells, a vulnerability that can be exploited clinically. We report that resistance to asparagine starvation is uniquely dependent on an N-terminal low-complexity domain of GSK3α, which its paralog GSK3ß lacks. In response to depletion of specific amino acids, including asparagine, leucine, and valine, this domain mediates supramolecular assembly of GSK3α with ubiquitin-proteasome system components in spatially sequestered cytoplasmic bodies. This effect is independent of mTORC1 or GCN2. In normal cells, GSK3α promotes survival during essential amino acid starvation. In human leukemia, GSK3α body formation predicts asparaginase resistance, and sensitivity to asparaginase combined with a GSK3α inhibitor. We propose that GSK3α body formation provides a cellular mechanism to maximize the catalytic efficiency of proteasomal protein degradation in response to amino acid starvation, an adaptive response co-opted by cancer cells for asparaginase resistance.


Asunto(s)
Asparaginasa , Leucemia , Aminoácidos/metabolismo , Asparaginasa/genética , Asparaginasa/metabolismo , Asparaginasa/farmacología , Asparagina , Humanos , Proteínas Serina-Treonina Quinasas
4.
Blood Adv ; 5(23): 5190-5201, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34649271

RESUMEN

Primary or secondary immunodeficiencies are characterized by disruption of cellular and humoral immunity. Respiratory infections are a major cause of morbidity and mortality among immunodeficient or immunocompromised patients, with Staphylococcus aureus being a common offending organism. We propose here an adoptive macrophage transfer approach aiming to enhance impaired pulmonary immunity against S aureus. Our studies, using human-induced pluripotent stem cell-derived macrophages (iMφs), demonstrate efficient antimicrobial potential against methicillin-sensitive and methicillin-resistant clinical isolates of S aureus. Using an S aureus airway infection model in immunodeficient mice, we demonstrate that the adoptive transfer of iMφs is able to reduce the bacterial load more than 10-fold within 20 hours. This effect was associated with reduced granulocyte infiltration and less damage in lung tissue of transplanted animals. Whole transcriptome analysis of iMφs compared with monocyte-derived macrophages indicates a more profound upregulation of inflammatory genes early after infection and faster normalization 24 hours postinfection. Our data demonstrate high therapeutic efficacy of iMφ-based immunotherapy against S aureus infections and offer an alternative treatment strategy for immunodeficient or immunocompromised patients.


Asunto(s)
Células Madre Pluripotentes Inducidas , Infecciones del Sistema Respiratorio , Infecciones Estafilocócicas , Animales , Humanos , Macrófagos , Ratones , Infecciones Estafilocócicas/terapia , Staphylococcus aureus
5.
Gastroenterology ; 159(6): 2130-2145.e5, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32805279

RESUMEN

BACKGROUND & AIMS: After birth, the immune system matures via interactions with microbes in the gut. The S100 calcium binding proteins S100A8 and S100A9, and their extracellular complex form, S100A8-A9, are found in high amounts in human breast milk. We studied levels of S100A8-A9 in fecal samples (also called fecal calprotectin) from newborns and during infancy, and their effects on development of the intestinal microbiota and mucosal immune system. METHODS: We collected stool samples (n = 517) from full-term (n = 72) and preterm infants (n = 49) at different timepoints over the first year of life (days 1, 3, 10, 30, 90, 180, and 360). We measured levels of S100A8-A9 by enzyme-linked immunosorbent assay and analyzed fecal microbiomes by 16S sRNA gene sequencing. We also obtained small and large intestine biopsies from 8 adults and 10 newborn infants without inflammatory bowel diseases (controls) and 8 infants with necrotizing enterocolitis and measured levels of S100A8 by immunofluorescence microscopy. Children were followed for 2.5 years and anthropometric data and medical information on infections were collected. We performed studies with newborn C57BL/6J wild-type and S100a9-/- mice (which also lack S100A8). Some mice were fed or given intraperitoneal injections of S100A8 or subcutaneous injections of Staphylococcus aureus. Blood and intestine, mesenterial and celiac lymph nodes were collected; cells and cytokines were measured by flow cytometry and studied in cell culture assays. Colon contents from mice were analyzed by culture-based microbiology assays. RESULTS: Loss of S100A8 and S100A9 in mice altered the phenotypes of colonic lamina propria macrophages, compared with wild-type mice. Intestinal tissues from neonatal S100-knockout mice had reduced levels of CX3CR1 protein, and Il10 and Tgfb1 mRNAs, compared with wild-type mice, and fewer T-regulatory cells. S100-knockout mice weighed 21% more than wild-type mice at age 8 weeks and a higher proportion developed fatal sepsis during the neonatal period. S100-knockout mice had alterations in their fecal microbiomes, with higher abundance of Enterobacteriaceae. Feeding mice S100 at birth prevented the expansion of Enterobacteriaceae, increased numbers of T-regulatory cells and levels of CX3CR1 protein and Il10 mRNA in intestine tissues, and reduced body weight and death from neonatal sepsis. Fecal samples from term infants, but not preterm infants, had significantly higher levels of S100A8-A9 during the first 3 months of life than fecal samples from adults; levels decreased to adult levels after weaning. Fecal samples from infants born by cesarean delivery had lower levels of S100A8-A9 than from infants born by vaginal delivery. S100 proteins were expressed by lamina propria macrophages in intestinal tissues from infants, at higher levels than in intestinal tissues from adults. High fecal levels of S100 proteins, from 30 days to 1 year of age, were associated with higher abundance of Actinobacteria and Bifidobacteriaceae, and lower abundance of Gammaproteobacteria-particularly opportunistic Enterobacteriaceae. A low level of S100 proteins in infants' fecal samples associated with development of sepsis and obesity by age 2 years. CONCLUSION: S100A8 and S100A9 regulate development of the intestinal microbiota and immune system in neonates. Nutritional supplementation with these proteins might aide in development of preterm infants and prevent microbiota-associated disorders in later years.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Adulto , Animales , Biopsia , Calgranulina A/administración & dosificación , Calgranulina A/análisis , Calgranulina B/análisis , Calgranulina B/genética , Preescolar , Colon/microbiología , Colon/patología , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Disbiosis/microbiología , Disbiosis/prevención & control , Enterocolitis Necrotizante/epidemiología , Enterocolitis Necrotizante/inmunología , Enterocolitis Necrotizante/microbiología , Enterocolitis Necrotizante/prevención & control , Heces/química , Heces/microbiología , Femenino , Estudios de Seguimiento , Microbioma Gastrointestinal/genética , Humanos , Inmunidad Mucosa , Lactante , Recién Nacido , Recien Nacido Prematuro/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Noqueados , Obesidad/epidemiología , Obesidad/inmunología , Obesidad/microbiología , Obesidad/prevención & control , ARN Ribosómico 16S/genética , Sepsis/epidemiología , Sepsis/inmunología , Sepsis/microbiología , Sepsis/prevención & control
6.
FASEB J ; 33(10): 10633-10647, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31262195

RESUMEN

Newborn infants have a high disposition to develop systemic inflammatory response syndromes (SIRSs) upon inflammatory or infectious challenges. Moreover, there is a considerable trafficking of hematopoietic cells to tissues already under noninflammatory conditions. These age-specific characteristics suggest a hitherto unappreciated crucial role of the vascular endothelium during the neonatal period. Here, we demonstrate that healthy neonates showed already strong endothelial baseline activation, which was mediated by a constitutively increased production of TNF-α. In mice, pharmacological inhibition of TNF-α directly after birth prevented subsequent fatal SIRS but completely abrogated the recruitment of leukocytes to sites of infection. Importantly, in healthy neonates, blocking TNF-α at birth disrupted the physiologic leukocyte trafficking, which resulted in persistently altered leukocyte profiles at barrier sites. Collectively, these data suggest that constitutive TNF-α-mediated sterile endothelial activation in newborn infants contributes to the increased risk of developing SIRS but is needed to ensure the postnatal recruitment of leukocytes to organs and interfaces.-Bickes, M. S., Pirr, S., Heinemann, A. S., Fehlhaber, B., Halle, S., Völlger, L., Willers, M., Richter, M., Böhne, C., Albrecht, M., Langer, M., Pfeifer, S., Jonigk, D., Vieten, G., Ure, B., von Kaisenberg, C., Förster, R., von Köckritz-Blickwede, M., Hansen, G., Viemann, D. Constitutive TNF-α signaling in neonates is essential for the development of tissue-resident leukocyte profiles at barrier sites.


Asunto(s)
Recién Nacido/sangre , Recién Nacido/inmunología , Leucocitos/inmunología , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/inmunología , Animales , Animales Recién Nacidos , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Endotelio Vascular/inmunología , Etanercept/farmacología , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunosupresores/farmacología , Recien Nacido Prematuro , Leucocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Transducción de Señal/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/prevención & control , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
7.
Sci Rep ; 9(1): 5919, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30976090

RESUMEN

Neonatal animal models are increasingly employed in order to unravel age-specific disease mechanisms. Appropriate tools objectifying the clinical condition of murine neonates are lacking. In this study, we tested a scoring system specifically designed for newborn mice that relies on clinical observation and examination. Both, in a neonatal sepsis model and an endotoxic shock model, the scoring results strongly correlated with disease-induced death rates. Full as well as observation-restricted scoring, reliably predicted fatality and the remaining time until death. Clinical scores even proved as more sensitive biomarker than 6 traditionally used plasma cytokine levels in detecting sepsis at an early disease stage. In conclusion, we propose a simple scoring system that detects health impairments of newborn mice in a non-invasive longitudinal and highly sensitive manner. Its usage will help to meet animal welfare requirements and might improve the understanding of neonatal disease mechanisms.


Asunto(s)
Endotoxemia/mortalidad , Modelos Estadísticos , Sepsis/mortalidad , Índice de Severidad de la Enfermedad , Animales , Animales Recién Nacidos , Citocinas/metabolismo , Endotoxemia/etiología , Endotoxemia/metabolismo , Endotoxemia/patología , Ratones , Valor Predictivo de las Pruebas , Sepsis/etiología , Sepsis/metabolismo , Sepsis/patología , Tasa de Supervivencia
8.
FASEB J ; 32(1): 26-36, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28855276

RESUMEN

Leukocytes express formyl-peptide receptors (FPRs), which sense microbe-associated molecular pattern (MAMP) molecules, leading to leukocyte chemotaxis and activation. We recently demonstrated that phenol-soluble modulin (PSM) peptides from highly pathogenic Staphylococcus aureus are efficient ligands for the human FPR2. How PSM detection by FPR2 impacts on the course of S. aureus infections has remained unknown. We characterized the specificity of mouse FPR2 (mFpr2) using a receptor-transfected cell line, homeobox b8 (Hoxb8), and primary neutrophils isolated from wild-type (WT) or mFpr2-/- mice. The influx of leukocytes into the peritoneum of WT and mFpr2-/- mice was analyzed. We demonstrate that mFpr2 is specifically activated by PSMs in mice, and they represent the first secreted pathogen-derived ligands for the mFpr2. Intraperitoneal infection with S. aureus led to lower numbers of immigrated leukocytes in mFpr2-/- compared with WT mice at 3 h after infection, and this difference was not observed when mice were infected with an S. aureus PSM mutant. Our data support the hypothesis that the mFpr2 is the functional homolog of the human FPR2 and that a mouse infection model represents a suitable model for analyzing the role of PSMs during infection. PSM recognition by mFpr2 shapes leukocyte influx in local infections, the typical infections caused by S. aureus-Weiss, E., Hanzelmann, D., Fehlhaber, B., Klos, A., von Loewenich, F. D., Liese, J., Peschel, A., Kretschmer, D. Formyl-peptide receptor 2 governs leukocyte influx in local Staphylococcus aureus infections.


Asunto(s)
Leucocitos/inmunología , Receptores de Formil Péptido/inmunología , Receptores de Lipoxina/inmunología , Infecciones Estafilocócicas/inmunología , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/inmunología , Señalización del Calcio/inmunología , Degranulación de la Célula/inmunología , Línea Celular , Movimiento Celular/inmunología , Modelos Animales de Enfermedad , Femenino , Genes Bacterianos , Proteínas de Homeodominio/inmunología , Humanos , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Neutrófilos/inmunología , Receptores de Formil Péptido/deficiencia , Receptores de Formil Péptido/genética , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología
10.
Nat Immunol ; 18(6): 622-632, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28459433

RESUMEN

The high risk of neonatal death from sepsis is thought to result from impaired responses by innate immune cells; however, the clinical observation of hyperinflammatory courses of neonatal sepsis contradicts this concept. Using transcriptomic, epigenetic and immunological approaches, we demonstrated that high amounts of the perinatal alarmins S100A8 and S100A9 specifically altered MyD88-dependent proinflammatory gene programs. S100 programming prevented hyperinflammatory responses without impairing pathogen defense. TRIF-adaptor-dependent regulatory genes remained unaffected by perinatal S100 programming and responded strongly to lipopolysaccharide, but were barely expressed. Steady-state expression of TRIF-dependent genes increased only gradually during the first year of life in human neonates, shifting immune regulation toward the adult phenotype. Disruption of this critical sequence of transient alarmin programming and subsequent reprogramming of regulatory pathways increased the risk of hyperinflammation and sepsis. Collectively these data suggest that neonates are characterized by a selective, transient microbial unresponsiveness that prevents harmful hyperinflammation in the delicate neonate while allowing for sufficient immunological protection.


Asunto(s)
Calgranulina A/inmunología , Calgranulina B/inmunología , Inmunidad Innata/inmunología , Monocitos/inmunología , Sepsis Neonatal/inmunología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/inmunología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Animales Recién Nacidos , Calgranulina A/efectos de los fármacos , Calgranulina B/efectos de los fármacos , Epigénesis Genética , Sangre Fetal , Citometría de Flujo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Inmunidad Innata/efectos de los fármacos , Immunoblotting , Recién Nacido , Inflamación , Lipopolisacáridos/farmacología , Ratones , Ratones Noqueados , Monocitos/efectos de los fármacos , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Sepsis Neonatal/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Toll-Like 4/inmunología
11.
FASEB J ; 31(3): 1153-1164, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27993995

RESUMEN

The high susceptibility of newborn infants to sepsis is ascribed to an immaturity of the neonatal immune system, but the molecular mechanisms remain unclear. Newborn monocytes massively release the alarmins S100A8/S100A9. In adults, these are major regulators of immunosuppressive myeloid-derived suppressor cells (MDSCs). We investigated whether S100A8/S100A9 cause an expansion of monocytic MDSCs (Mo-MDSCs) in neonates, thereby contributing to an immunocompromised state. Mo-MDSCs have been assigned to CD14+/human leukocyte antigen (HLA)-DR-/low/CD33+ monocytes in humans and to CD11b+/Gr-1int/Ly6G-/Ly6Chi cells in mice. We found monocytes with these phenotypes significantly expanded in their respective newborns. Functionally, however, they did not prove immunosuppressive but rather responded inflammatorily to microbial stimulation. Their expansion did not correlate with high S100A8/S100A9 levels in cord blood. Murine studies revealed an excessive expansion of CD11b+/Gr-1int/Ly6G-/Ly6Chi monocytes in S100A9-/- neonates compared to wild-type neonates. This strong baseline expansion was associated with hyperinflammatory responses during endotoxemia and fatal septic courses. Treating S100A9-/- neonates directly after birth with S100A8/S100A9 alarmins prevented excessive expansion of this inflammatory monocyte population and death from septic shock. Our data suggest that a specific population of inflammatory monocytes promotes fatal courses of sepsis in neonates if its expansion is not regulated by S100A8/S100A9 alarmins.-Heinemann, A. S., Pirr, S., Fehlhaber, B., Mellinger, L., Burgmann, J., Busse, M., Ginzel, M., Friesenhagen, J., von Köckritz-Blickwede, M., Ulas, T., von Kaisenberg, C. S., Roth, J., Vogl, T., Viemann, D. In neonates S100A8/S100A9 alarmins prevent the expansion of a specific inflammatory monocyte population promoting septic shock.


Asunto(s)
Alarminas/sangre , Calgranulina A/sangre , Calgranulina B/sangre , Monocitos/inmunología , Sepsis Neonatal/sangre , Animales , Calgranulina A/uso terapéutico , Calgranulina B/uso terapéutico , Células Cultivadas , Femenino , Humanos , Recién Nacido , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Sepsis Neonatal/prevención & control , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo
12.
Front Immunol ; 8: 1822, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29326708

RESUMEN

Sepsis is a leading cause of perinatal mortality worldwide. Breast milk (BM) feeding is protective against neonatal sepsis, but the molecular mechanisms remain unexplained. Despite various supplementations with potential bioactive components from BM formula feeding cannot protect from sepsis. S100-alarmins are important immunoregulators in newborns preventing excessive inflammation. At high concentrations, the S100A8/A9 protein complex also has antimicrobial properties due to its metal ion chelation capacity. To assess whether BM contains S100-alarmins that might mediate the sepsis-protective effect of BM 97 human BM samples stratified for gestational age, mode of delivery and sampling after birth were collected and analyzed. S100A8/A9 levels were massively elevated after birth (p < 0.0005). They slowly decreased during the first month of life, then reaching levels comparable to normal values in adult serum. The concentration of S100A8/A9 in BM was significantly higher after term compared with preterm birth (extremely preterm, p < 0.005; moderate preterm, p < 0.05) and after vaginal delivery compared with cesarean section (p < 0.0005). In newborn s100a9-/- mice, enterally supplied S100-alarmins could be retrieved systemically in the plasma. To explore the antimicrobial activity against common causal pathogens of neonatal sepsis, purified S100-alarmins and unmodified as well as S100A8/A9-depleted BM were used in growth inhibition tests. The high amount of S100A8/A9 proved to be an important mediator of the antimicrobial activity of BM, especially inhibiting the growth of manganese (Mn) sensitive bacteria such as Staphylococcus aureus (p < 0.00005) and group B streptococci (p < 0.005). Depletion of S100A8/A9 significantly reduced this effect (p < 0.05, respectively). The growth of Escherichia coli was also inhibited by BM (p < 0.00005) as well as by S100A8/A9 in culture assays (p < 0.05). But its growth in BM remained unaffected by the removal of S100A8/A9 and was neither dependent on Mn suggesting that the antimicrobial effects of S100A8/A9 in BM are primarily mediated by its Mn chelating capacity. In summary, the enteral supply of bioavailable, antimicrobially active amounts of S100-alarmins might be a promising option to protect newborns at high risk from infections and sepsis.

13.
Pathog Dis ; 74(2)2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26676260

RESUMEN

Chlamydia trachomatis causes sexually transmitted diseases with infertility, pelvic inflammatory disease and neonatal pneumonia as complications. The duration of urogenital mouse models with the strict mouse pathogen C. muridarum addressing vaginal shedding, pathological changes of the upper genital tract or infertility is rather long. Moreover, vaginal C. trachomatis application usually does not lead to the complications feared in women. A fast-to-perform mouse model is urgently needed to analyze new antibiotics, vaccine candidates, immune responses (in gene knockout animals) or mutants of C. trachomatis. To complement the valuable urogenital model with a much faster and quantifiable screening method, we established an optimized lung infection model for the human intracellular bacterium C. trachomatis serovar D (and L2) in immunocompetent C57BL/6J mice. We demonstrated its usefulness by sensitive determination of antibiotic effects characterizing advantages and limitations achievable by early or delayed short tetracycline treatment and single-dose azithromycin application. Moreover, we achieved partial acquired protection in reinfection with serovar D indicating usability for vaccine studies, and showed a different course of disease in absence of complement factor C3. Sensitive monitoring parameters were survival rate, body weight, clinical score, bacterial load, histological score, the granulocyte marker myeloperoxidase, IFN-γ, TNF-α, MCP-1 and IL-6.


Asunto(s)
Antibacterianos/uso terapéutico , Vacunas Bacterianas/inmunología , Chlamydia trachomatis/efectos de los fármacos , Chlamydia trachomatis/fisiología , Neumonía por Clamidia/tratamiento farmacológico , Neumonía por Clamidia/prevención & control , Interacciones Huésped-Patógeno , Animales , Antibacterianos/farmacología , Carga Bacteriana , Biopsia , Línea Celular , Neumonía por Clamidia/microbiología , Neumonía por Clamidia/mortalidad , Complemento C3/genética , Complemento C3/inmunología , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunoglobulina G/inmunología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Noqueados , Peroxidasa/metabolismo
14.
Immunol Cell Biol ; 92(7): 631-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24777312

RESUMEN

The complement system is a major component of our innate immune system, in which the complement proteins C5a and C5a-des Arg bind to two G-protein-coupled receptors: namely, the C5a receptor (C5a1) and C5a receptor like-2 receptor (C5a2, formerly called C5L2). Recently, it has been demonstrated that C5a, but not C5a-des Arg, upregulates heteromer formation between C5a1 and C5a2, leading to an increase in IL-10 release from human monocyte-derived macrophages (HMDMs). A bioluminescence resonance energy transfer (BRET) assay was used to assess the recruitment of ß-arrestins by C5a and C5a-des Arg at the C5a1 and C5a2 receptors. C5a demonstrated elevated ß-arrestin 2 recruitment levels in comparison with C5a-des Arg, whereas no significant difference was observed at C5a2. A constitutive complex that formed between ß-arrestin 2 and C5a2 accounted for half of the BRET signal observed. Interestingly, both C5a and C5a-des Arg exhibited higher potency for ß-arrestin 2 recruitment via C5a2, indicating preference for C5a2 over C5a1. When C5a was tested in a functional ERK1/2 assay in HMDMs, inhibition of ERK1/2 was observed only at concentrations at or above the EC50 for heteromer formation. This suggested that increased recruitment of the ß-arrestin-C5a2 complex at these C5a concentrations might have an inhibitory role on C5a1 signaling through ERK1/2. An improved understanding of C5a2 modulation of signaling in acute inflammation could be of benefit in the development of ligands for conditions such as sepsis.


Asunto(s)
Arrestinas/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Receptores de Quimiocina/metabolismo , Arrestinas/genética , Línea Celular , Células Cultivadas , Expresión Génica , Factor Estimulante de Colonias de Granulocitos/biosíntesis , Humanos , Macrófagos/inmunología , Unión Proteica , Multimerización de Proteína , Receptor de Anafilatoxina C5a/química , Receptor de Anafilatoxina C5a/genética , Receptores de Quimiocina/química , Receptores de Quimiocina/genética , Arrestina beta 2 , beta-Arrestinas
15.
J Infect Dis ; 209(8): 1269-78, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24273177

RESUMEN

BACKGROUND: The complement system protects against extracellular pathogens and links innate and adaptive immunity. In this study, we investigated the anaphylatoxin C3a receptor (C3aR) in Chlamydia psittaci lung infection and elucidated C3a-dependent adaptive immune mechanisms. METHODS: Survival, body weight, and clinical score were monitored in primary mouse infection and after serum transfer. Bacterial load, histology, cellular distribution, cytokines, antibodies, and lymphocytes were analyzed. RESULTS: C3aR(-/-) mice showed prolonged pneumonia with decreased survival, lower weight, and higher clinical score. Compared to wild-type mice bacterial clearance was impaired, and inflammatory parameters were increased. In lung-draining lymph nodes of C3aR(-/-) mice the total number of B cells, CD4(+) T cells, and Chlamydia-specific IFN-γ(+) (CD4(+) or CD8(+)) cells was reduced upon infection, and the mice were incapable of Chlamydia-specific immunoglobulin M or immunoglobulin G production. Performed before infection, transfer of hyperimmune serum prolonged survival of C3aR(-/-) mice. CONCLUSIONS: C3a and its receptor are critical for defense against C. psittaci in mouse lung infection. In this model, C3a acts via its receptor as immune modulator. Enhancement of specific B and T cell responses upon infection with an intracellular bacterium were identified as hitherto unknown features of C3a/C3aR. These new functions might be of general immunological importance.


Asunto(s)
Inmunidad Adaptativa/inmunología , Infecciones por Chlamydophila/prevención & control , Chlamydophila psittaci/patogenicidad , Pulmón/microbiología , Neumonía Bacteriana/prevención & control , Receptores de Complemento/fisiología , Linfocitos T/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Infecciones por Chlamydophila/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Ratones , Neumonía Bacteriana/inmunología
16.
Infect Immun ; 81(9): 3366-74, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23817611

RESUMEN

Chlamydia pneumoniae is associated with chronic inflammatory lung diseases like bronchial asthma and chronic obstructive pulmonary disease. The existence of a causal link between allergic airway disease and C. pneumoniae is controversial. A mouse model was used to address the question of whether preceding C. pneumoniae lung infection and recovery modifies the outcome of experimental allergic asthma after subsequent sensitization with house dust mite (HDM) allergen. After intranasal infection, BALB/c mice suffered from pneumonia characterized by an increased clinical score, reduction of body weight, histopathology, and a bacterial load in the lungs. After 4 weeks, when infection had almost resolved clinically, HDM allergen sensitization was performed for another 4 weeks. Subsequently, mice were subjected to a methacholine hyperresponsiveness test and sacrificed for further analyses. As expected, after 8 weeks, C. pneumoniae-specific antibodies were detectable only in infected mice and the titer was significantly higher in the C. pneumoniae/HDM allergen-treated group than in the C. pneumoniae/NaCl group. Intriguingly, airway hyperresponsiveness and eosinophilia in bronchoalveolar lavage fluid were significantly lower in the C. pneumoniae/HDM allergen-treated group than in the mock/HDM allergen-treated group. We did observe a relationship between experimental asthma and chlamydial infection. Our results demonstrate an influence of sensitization to HDM allergen on the development of a humoral antibacterial response. However, our model demonstrates no increase in the severity of experimental asthma to HDM allergen as a physiological allergen after clinically resolved severe chlamydial lung infection. Our results rather suggest that allergic airway disease and concomitant cellular changes in mice are decreased following C. pneumoniae lung infection in this setting.


Asunto(s)
Alérgenos/inmunología , Chlamydophila pneumoniae/inmunología , Pulmón/inmunología , Pulmón/microbiología , Pyroglyphidae/inmunología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/patología , Animales , Asma/inmunología , Asma/microbiología , Asma/patología , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/microbiología , Infecciones por Chlamydophila/inmunología , Infecciones por Chlamydophila/microbiología , Infecciones por Chlamydophila/patología , Eosinofilia/inmunología , Eosinofilia/microbiología , Eosinofilia/patología , Femenino , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Neumonía/inmunología , Neumonía/microbiología , Neumonía/patología , Infecciones del Sistema Respiratorio/microbiología
17.
Infect Immun ; 74(6): 3576-86, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16714590

RESUMEN

The bacterial pathogen Burkholderia pseudomallei invades host cells, escapes from endocytic vesicles, multiplies intracellularly, and induces the formation of actin tails and membrane protrusions, leading to direct cell-to-cell spreading. This study was aimed at the identification of B. pseudomallei genes responsible for the different steps of this intracellular life cycle. B. pseudomallei transposon mutants were screened for a reduced ability to form plaques on PtK2 cell monolayers as a result of reduced intercellular spreading. Nine plaque assay mutants with insertions in different open reading frames were selected for further studies. One mutant defective in a hypothetical protein encoded within the Bsa type III secretion system gene cluster was found to be unable to escape from endocytic vesicles after invasion but still multiplied within the vacuoles. Another mutant with a defect in a putative exported protein reached the cytoplasm but exhibited impaired actin tail formation in addition to a severe intracellular growth defect. In four mutants, the transposon had inserted into genes involved in either purine, histidine, or p-aminobenzoate biosynthesis, suggesting that these pathways are essential for intracellular growth. Three mutants with reduced plaque formation were shown to have gene defects in a putative cytidyltransferase, a putative lipoate-protein ligase B, and a hypothetical protein. All nine mutants proved to be significantly attenuated in a murine model of infection, with some mutants being essentially avirulent. In conclusion, we have identified a number of novel major B. pseudomallei virulence genes which are essential for the intracellular life cycle of this pathogen.


Asunto(s)
Burkholderia pseudomallei/genética , Genes Bacterianos/fisiología , Ácido 4-Aminobenzoico/metabolismo , Actinas/metabolismo , Animales , Proteínas Bacterianas/fisiología , Burkholderia pseudomallei/crecimiento & desarrollo , Burkholderia pseudomallei/patogenicidad , Elementos Transponibles de ADN , Femenino , Histidina/biosíntesis , Humanos , Ratones , Ratones Endogámicos BALB C , Purinas/biosíntesis , Vacuolas/microbiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...